Roll No. Total No. of Pa	ges	:	:	2
--------------------------	-----	---	---	---

Total No. of Questions: 07

BCA (Sem.-2)

DIGITAL CIRCUIT & LOGIC DESIGN

Subject Code: BC-205 (2007 to 2010 Batch)

Paper ID: [B0209]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTION TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- SECTION-B contains SIX questions carrying TEN marks each and students has to attempt any FOUR questions.

SECTION-A

- 1. Write briefly:
 - a. What four bit number is equal to its 2's complement?
 - b. Discuss the racing condition. How is it avoided?
 - c. Compare level triggering and edge triggering.
 - d. What is up down counter?
 - e. What are maxterms?
 - Add a parity bit to make odd parity in the binary word 11001101.
 - What do you mean by non-weighted codes?
 - h. Convert $(0.6875)_{10}$ into octal.
 - State and prove De-Morgan's Theorem.
 - j. What is the difference between latch and flip-flop?

SECTION-B

2. A) Minimize the following logic function and realize using NAND gates:

$$f(A,B,C,D)=SIGMA m(1,3,5,8,9,11,15) + d(2,13)$$

- B) Design a 4-bit carry look ahead adder and explain its truth table for carry generation and propagation.
- 3. What is the difference between sequential and combinational circuits? Explain the designing of full adder and full subtractor.
- 4. Write short note on:
 - (a) Gate Propagation delay time
 - (b) DEMUX
 - (c) Code Converter
- 5. Differentiate between synchronous and asynchronous counters. What is the limitation of parity method for error detection? Describe the Hamming code for error detection and correction.
- 6. Explain Decoder for binary to gray code.
- 7. Implement following using 4 x 16 Decoder

$$F = XY + \overline{Z}$$